Regulation, Signaling, and Physiological Functions of G-Proteins
نویسندگان
چکیده
منابع مشابه
Physiological regulation of G protein-linked signaling.
Heterotrimeric G proteins in vertebrates constitute a family molecular switches that transduce the activation of a populous group of cell-surface receptors to a group of diverse effector units. The receptors include the photopigments such as rhodopsin and prominent families such as the adrenergic, muscarinic acetylcholine, and chemokine receptors involved in regulating a broad spectrum of respo...
متن کاملRegulation and physiological functions of G12/13-mediated signaling pathways.
Accumulating data indicate that G12 subfamily (Galpha12/13)-mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. It has been demonstrated that Galpha12/13-mediated signals form networks with other signaling proteins at various levels, from cell surface receptors to transcr...
متن کاملRegulation of G protein-coupled receptor signaling by scaffold proteins.
The actions of many hormones and neurotransmitters are mediated through stimulation of G protein-coupled receptors. A primary mechanism by which these receptors exert effects inside the cell is by association with heterotrimeric G proteins, which can activate a wide variety of cellular enzymes and ion channels. G protein-coupled receptors can also interact with a number of cytoplasmic scaffold ...
متن کاملRole of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences
Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer's disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly interact with the heterotrimeric G protein Gαo (but not other G proteins) via ...
متن کاملPhysiological functions of APP family proteins.
Biochemical and genetic evidence establishes a central role of the amyloid precursor protein (APP) in Alzheimer disease (AD) pathogenesis. Biochemically, deposition of the β-amyloid (Aβ) peptides produced from proteolytic processing of APP forms the defining pathological hallmark of AD; genetically, both point mutations and duplications of wild-type APP are linked to a subset of early onset of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Molecular Biology
سال: 2016
ISSN: 0022-2836
DOI: 10.1016/j.jmb.2016.08.002